
Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Practical Work P1
Camera calibration using OpenCV & Python

This practical work is designed to illustrate the calibration of a digital camera using OpenCV.

Preparation
The first dependency that is needed is OpenCV library. The OpenCV library can be installed with
the command:

pip install opencv-python

or for conda installation:

conda install -c conda-forge opencv-python

The second dependency is related to image and geometry display. The MatPlotLib library that can
be installed with the command:

pip install matplotlib

or for conda installation:

conda install -c conda-forge matplotlib

The MatPlot library displays geometric rendering in an independent interactive window.
Depending on the Python environment, this window may be rendered as a frozen image,
preventing user interaction. To correct this problem, here are a few solutions:

Jupyter Notebook:

Execute following code within the Jupyter Notebook:

%matplotlib qt

PyCharm

Go to Settings / Tool / Python Plot and uncheck the option Show plots in tool
windows.

Spyder

Go to Tools / Preferences / IPython console / Graphics / Backend:Inline and
change "Inline" to "Automatic". Click OK button and restart the IDE.

http://www.seinturier.fr/
http://www.opencv.org/
https://matplotlib.org/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Using OpenCV and MatPlot within Python program
OpenCV python binding relies on Numpy for the vector and matrix representation and on
MatPlotLib for display. Using OpenCV within a Python program needs to import the three libraries:

import numpy as np

import cv2 as cv

import matplotlib.pyplot as plt

All Python program that uses OpenCV has to contain these imports.

Exercise 1

Create a python file calibration_chessboard.py that contains the following program:

import numpy as np
import cv2 as cv
import glob
import matplotlib.pyplot as plt

def calibrate_chessboard(image_files):
 print('Chessboard calibration')

def main():
 calibrate_chessboard(())

if __name__ == "__main__":
 main()

Run the program to ensure that all the dependencies are installed.

http://www.seinturier.fr/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Camera calibration
The camera calibration relies on taking images of a rigid frame (the chessboard) and processing
it.

Preparation
The first steps before calibrating a camera are to ensure that all the needed dependencies are
set up and that it is possible to load images from files.

Exercise 2:

Create a folder named data in the same directory as calibration_chessboard.py and put
some images within the data folder. Modify then the calibration_chessboard.py program as
follows:

import numpy as np
import cv2 as cv
import glob
import matplotlib.pyplot as plt

def calibrate_chessboard(image_files):

 print('Image list:')
 for image_file in image_files:
 print(' -'+image_file)

def main():

 # Load images from data folder
 image_files = glob.glob('data/images/*.jpg')

 calibrate_chessboard(image_files)

if __name__ == "__main__":
 main()

Run the program and ensure that are the images within data directory are listed.

Before calibrating, listed images has to be loaded within OpenCV format. The load of an image
from a file is possible with the instructions:

img = cv.imread(image_file)

gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

The first one load an image within OpenCV format, the second one convert the images to
grayscale (that is needed by calibration algorithm).

When an image is loaded, it is possible to display it using MatPlotLib.

http://www.seinturier.fr/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Exercise 3:

Modify the calibration_chessboard.py program as follows:

import numpy as np
import cv2 as cv
import glob
import matplotlib.pyplot as plt

def calibrate_chessboard(image_files):

 for image_file in image_files:

 # Load image
 img = cv.imread(image_file)

 # Convert image to gray
 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 # Display image
 plt.imshow(img, cmap='gray')
 plt.show()

def main():

 # Load images from data folder
 image_files = glob.glob('data/images/*.jpg')

 calibrate_chessboard(image_files)

if __name__ == "__main__":
 main()

Ensure that when running the program, images are showing within MatPlotLib window.

Chessboard configuration
Camera calibration process aims at optimizing the chessboard seen on images with its theoretical
description. Program has to know the characteristics of the chessboard.

Exercise 4:

Modify the program calibration_chessboard.py in order to integrate chessboard
characteristics. The function calibrate_chessboard(image_files) has to be added with:

def calibrate_chessboard(image_files):
 # Chessboard dimension
 rows = 9
 cols = 6
 size = 1.0

 objp = np.zeros((rows * cols, 3), np.float32)

 for x in range(0, cols):
 for y in range(0, rows):
 objp[y * cols + x] = [x * size, y * size, 0]

http://www.seinturier.fr/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Chessboard detection
Performing calibration relies on finding the chessboard corners on all images. OpenCV provide a
function that enable to detect corners of a chessboard:

ret, corners = cv.findChessboardCorners()

This function returns the list of detected corners from upper right to bottom left, line by line.

Exercise 5:

Modify the program calibration_chessboard.py in order to integrate chessboard detection
on images. The function calibrate_chessboard(image_files) has to be added with:

Find the chess board corners
ret, corners = cv.findChessboardCorners(gray, (cols, rows), None)

If found, add object points, image points (after refining them)
if ret is True:

 # Display image with corners
 plt.imshow(img, cmap='gray')

 for corner in corners:
 plt.plot(corner[0][0], corner[0][1], marker='+', color='red')

 plt.show()

else:
 print('No chessboard corner found on image ' + image_file)
 plt.imshow(img, cmap='gray')

 plt.show()
 print('No chessboard corner found on image ' + image_file)
 plt.imshow(img, cmap='gray')

plt.show()

http://www.seinturier.fr/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Data preparation
Chessboard detection can be optimized by enabling sub-pixel precision. The refinement of
detected corners can be done using the OpenCV function:

cv.cornerSubPix()

Thin function requires in entre the result from corner detection and a an optimization criteria.

Exercise 6:

Modify the program calibration_chessboard.py in order to integrate chessboard detection
refinement. Within The function calibrate_chessboard(image_files), the following code:

If found, add object points, image points (after refining them)
if ret is True:

 # Display image with corners
 plt.imshow(img, cmap='gray')

 for corner in corners:
 plt.plot(corner[0][0], corner[0][1], marker='+', color='red')

 plt.show()

else:
 print('No chessboard corner found on image ' + image_file)
 plt.imshow(img, cmap='gray')

plt.show()

has to me modified with:

If found, add object points, image points (after refining them)
if ret is True:

 # termination criteria
 criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30,
0.001)

 corners2 = cv.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 # Display image with corners
 plt.imshow(img, cmap='gray')

 for corner in corners2:
 plt.plot(corner[0][0], corner[0][1], marker='+', color='red')

 plt.show()

else:
 print('No chessboard corner found on image ' + image_file)
 plt.imshow(img, cmap='gray')

plt.show()

Ensure that the program still detect correctly the chessboard

http://www.seinturier.fr/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Calibration computation
Camera calibration work with determining the parameters to pass from corners position on an
image to a corner position in the 3D worlds. For this purpose, it is needed to express the
correspondences between 2D and 3D points. For that, two arrays have to be created, containing
for a same index I, the 3D coordinates in one array and the 2D coordinates of the corner in the
second array.

Exercise 7:

Modify the program calibration_chessboard.py in order to integrate chessboard detection
refinement. Within The function calibrate_chessboard(image_files), two arrays have to be
declared at the beginning of the function:

Arrays to store object points and image points from all the images.
points_2d = [] # 2d points in image plane
points_3d = [] # 3d point in real world space

These arrays have to be updated after the corner detection of an image. For that, the code:

 corners2 = cv.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 # Display image with corners
 plt.imshow(img, cmap='gray')

 for corner in corners2:
 plt.plot(corner[0][0], corner[0][1], marker='+', color='red')

 plt.show()

has to be modified into:

 corners2 = cv.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

 # Update 2D / 3D corner coordinates
 points_3d.append(objp)
 points_2d.append(corners2)

 # Display image with corners
 plt.imshow(img, cmap='gray')

 for corner in corners2:
 plt.plot(corner[0][0], corner[0][1], marker='+', color='red')

 plt.show()

The last information needed to perform the calibration is the size of the input images. This size
can be obtained using OpenCV integrated functions.

http://www.seinturier.fr/

Computer Vision

Julien SEINTURIER
http://www.seinturier.fr / julien.seinturier@univ-tln.fr

Exercise 8:

Modify the program calibration_chessboard.py in order to perform image size retrieval.
Within The function calibrate_chessboard(image_files), two arrays have to be declared at the
beginning of the function:

image_width = -1
image_height = -1

For each loaded image, its size can be obtained by modifying the code:

for image_file in image_files:

 # Load image
 img = cv.imread(image_file)

with:

for image_file in image_files:

 # Load image
 img = cv.imread(image_file)

 # Get the image dimension
 (h, w) = img.shape[:2]

 if image_width == -1 and image_height == -1:
 image_width = w
 image_height = h
 elif w != image_width or h != image_height:
 print('All calibration images have to got same dimension, ignoring
' + image_file)
 continue

With all these information, camera calibration can be performed.

Exercise 9:

Modify the program calibration_chessboard.py by appending to the function:

print('Calibrating camera...', end='')
camera_matrix = np.zeros((3, 3, 1), np.float32)
dist_coefs = np.zeros((5, 1, 1), np.float32)

retval, camera_matrix, dist_coefs, rvecs, tvecs =
cv.calibrateCamera(points_3d, points_2d, (image_height, image_width),
camera_matrix, dist_coefs)

Execute the whole program and try to calibrate your own camera.

http://www.seinturier.fr/

	Preparation
	Using OpenCV and MatPlot within Python program
	Camera calibration
	Preparation
	Chessboard configuration
	Chessboard detection
	Data preparation
	Calibration computation

